Build a Data Pipeline with AWS Athena and Airflow (part 1)

In this post, I build up on the knowledge shared in the post for creating Data Pipelines on Airflow and introduce new technologies that help in the Extraction part of the process with cost and performance in mind. I’ll go through the options available and then introduce to a specific solution using AWS Athena. First we’ll establish the dataset and organize our data in S3 Buckets. Afterwards, you’ll learn how to make it so that this information is queryable through AWS Athena, while making sure it is updated daily.

Data dump files of not so structured data are a common byproduct of Data Pipelines that include extraction. dumps of not-so-structured data. This happens by design: business-wise and as Data Engineers, it’s never too much data. From an investment stand point, object-relational database systems can become increasingly costly to keep, especially if we aim at keeping performance while the data grows.

Having this said, this is not a new problem. Both Apache and Facebook have developed open source software that is extremely efficient in dealing with extreme amounts of data. While such softwares are written in Java, they maintain an abstracted interface to the data that relies on traditional SQL language to query data that is stored on filesystem storage, such as S3 for our example and in a wide range of different formats from HFDS to CSV.

Today we have many options to tackle this problem and I’m going to go through on how to welcome this problem in today’s serverless world with AWS Athena. For this we need to quickly rewind back in time and go through the technology Continue reading “Build a Data Pipeline with AWS Athena and Airflow (part 1)”

Spark – Redshift: AWS Roles to the rescue

If you are using AWS to host your applications, you probably heard that you can apply IAM Roles also to ec2 instances. In a lot of cases this can be a really cool way to avoid passing AWS credentials to your applications, and having the pain of having to manage key distribution among servers, as well as ensuring key rotation mechanisms for security purposes.

This post is about a simple trick on how to take advantage of this feature when your Spark job needs to interact with AWS Redshift.

As can be read in Databricks repo for Spark-redshift library the are three (3) strategies for setting up AWS credentials: either setup in hadoop configuration (how many people are used to so far with Cloudera or HortonWorks), encoding the keys in a tempdir (by far not the best option if you ask me), or using temporary keys. The last strategy is the one being discussed here, and its based on AWS own documentation how to use temporary keys. Continue reading “Spark – Redshift: AWS Roles to the rescue”